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Signature of chaotic diffusion in band spectra
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We investigate the two-point correlations in the band spectra of periodic systems that exhibit chaotic
diffusion in the classical limit, in terms of form factors with the winding humber as a spatial argument. For
times below the Heisenberg time, they contain the full space-time dependence of the classical propagator. They
approach constant asymptotes via a regime, reflecting quantal ballistic motion, where they decay by a factor
proportional to the number of unit cells. We derive a universal scaling function for the long-time behavior. In
the limit of long chains, our results are consistent with expressions obtained by field-theoretical methods. They
are substantiated by numerical studies of the kicked rotor and a billiard ¢&di663-651X%98)03601-0

PACS numbsg(s): 05.45:+b, 03.65.Sq, 73.20.Dx

I. INTRODUCTION directly be identified in the band structure. Similarly, the
spectral signature of the crossover to quantum ballistic mo-
A large class of systems, among them most prominentljion can be analyzed on basis of the full quantum propagator.
solid-state systems, are organized as repetitions of identicéh the limit of a large number of unit cells, the form factors
or near-identical units. If in such a system ttiassicaldy-  €xhibit a marked peak in the vicinity of the Heisenberg time,
namics is chaotic and the unit cells are connected, then gldd consequence of the clustering of levels in quasicontinuous
bally this leads to a diffusive spreading of trajectories, irre-Pands. We obtain a universal scaling function for the long-
spective of the presence or absence of static disordefime behavior. o _
Regular motion on tori does not contribute to diffusive Form fa_ctors containing the correlations of _Ievels_across
spreading: Closed tori do not allow for transport along thethe Brillouin zone previously have been studied using the
lattice, while open tori give rise to ballistic spreading. TheSupermatrix nonlinears model [5,6]. Our approach is
spectral and transport properties of extendedntumsys- Complementary in that it emphasizes the important concept
tems, in contrast, depend sensitively on the degree of tran&f Winding numbers, providing direct access to spatial infor-
lational symmetry. On short time scales, however, where thahation. In combination wlth semiclassical technlques, this
quantum dynamics still closely follows the classical, both@llows us to draw a particularly transparent picture of the
periodic and disordered quantum systems exldpart from ~ Physics over all time regimes. We shall demonstrate that in
an initial ballistic phase that is of no interest for the follow- the case of diffusive spreading and in the limit of an infinite
ing) a spreading of wave packets with the characteristics ofumber of unit cells, our theory allows us to reproduce the
the chaotic diffusion in their classical counterparts. The sigPrincipal results of the~-model approach. At the same time,
nature of this phase in the discrete spectra of disordered sy§owever, we are able to go beyond those results in that we
tems with Anderson-localized eigenstates has been investii€€d not make any assumptions as to the number of unit cells
gated previously[1,2], using techniques in the spirit of N the system nor on the mode of density relaxation.
Berry’'s semiclassical derivatiof8,4] of the spectral form Our theory therefore applies to a broad class of systems.
factors for the canonical random-matrix ensembles. They include semiconductor superlattices supporting chaotic
In the present work, we report on a study of periodic€lectron motion“antidot arrays”) [7—10], quantum-optical
systems with band spectra and eigenstates of Bloch forn$yStems involving periodically modulated standmg—wave
focusing on the signature of spatial order and dynamical disfields[11], and Kolmogorov-Arnold-Moser systems with to-
order in the spectral two-point correlations. We exploit theroidal chaotic layers in phase space containing chains of
existence of a second conserved quantum number in additidggular resonance islands, as they occur frequently in mol-
to the energy, the quasimomentum, to define form factors icules|12]. For this type of system, there exists a large body
the canonically conjugate space spanned by time and windf spectral data, both experimental and numeticail2]. By
ing number. They are related to the spatially coarse-graine@n@lyzing these data as explained in the following, the dy-
propagator and therefore ideally suited to extract dynamicarpamlcal information encoded in the respective band struc-
information from the band structure, without recurring to atures can be extracted.
local spectrum. Here we evaluate this relation over the entire
time evolution of the form factors. In the_ semiclassical re- Il. GENERALIZED FORM FACTOR
gime, we show that the full space and time dependence of
the classical propagator is contained in the form factors. Cha- The setup we have in mind is a finite chainNfidentical
otic diffusion in spatially periodic quantum systems can thusunit cells, with cyclic boundary conditions at its ends. Spatial
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disorder within the unit cell i;mot required. We restrict our- _ 1 )
selves to quasi-one-dimensional lattices since the generaliza- Kn(7)= E' an(7)|°. (6)
tion to higher dimensions is straightforward.

As a consequence of periodicity, t_he spectrum can be dF‘Substituting Eq(5) shows that thé& ,(7) comprise pairs of
composed intdN subsets, each of which corresponds to on . L=
evels with all Bloch phases. In particulaKy(7) corre-

of the N irreducible representations of the group of lattice X . .
P group sponds to the form factor for the entire spectrum, irrespective

translationsT(nae), with n an integer. Together these sub- ¢ gpavia| periodicity. Equations) represents a partial trace
spectra coalesce into discretized bands and approach con-

tinuous bands in the limiN——cc. Dynamical and spectral of the propagatofJ. TheK,(7) can therefore be interpreted

guantities specific to one of the irreducible representationglS probabilities to return after encircling the unit cetimes.

[13,14] are constructed using the projectors
Il. SEMICLASSICAL REGIME

N—1 . . .
A semiclassical account of the symmetry-projected spec-

Pm:ﬁ ,120 Xm(MT'(nagy) D tral quantities is achieved on the basis of a generalized con-

cept of periodic orbit$13,16,17. It becomes transparent in a
onto the corresponding subspaces. They invoke the groupymmetry-reduced representation of the chain, where the two
characters y,(n)=exp(nd,). We refer to the @, bPoundaries of the unit cell connected by the translational
=27m/N, m=0,...N—1, as Bloch phases. The symmetry- symmetry are identified. In this way, the unit cell assumes

projected Green’s function is defined as the topology of an annulus, possibly times additional dimen-
sions. An orbit periodic in this reduced space can be classi-

fied according to its topology, expressed by its winding num-
ber, the number of times it runs around the unit cell before
. closing. The contribution of a periodic orhjitto d,,,(E) con-
WherEG(E) is the Green's function for the full chain. From tains the additional phase njgm’ Wherenj is the W|nd|ng
Gm(E), other Bloch-phase-specific quantities can be deriveshumber of this orbif13,16,17. By the two Fourier trans-
as if they pertained to the full spectrum of a system withoutforms that lead frond,,,(E) to a,(7), we obtain the semi-
spatial symmetry. For example, the Bloch-phase-specifig|assical trace formula

spectral density is related to the trace of the corresponding

Green’s function2) in the usual way(see, e.g., Ref15]),

Gu(E)=PnG(E), (2)

1 (1= T}p) exf i 284 77)

n\7)= i

An(E) =S SE~Eulfm)=—— M t{G(E)]. 3 7 derm—p) L A2
X Syar(7— 7'j)‘()\(n—nj)mode (7)

Here the trace extends only over a single unit cell.
The basic energy scale in the following is the inverse;in r}”), M;, S;, andu; denoting, respectively, the primi-

mean spectral densityer unit cell 1(d,) or, equivalently, e period, monodromy matrix, action, and Maslov index of
the mean separation of neighboring bands. We define alsgg periodic orbitj. In addition to the usual amplitude and
the Heisenberg time with respect to the unit ce|l phase factors, this trace formula has attained dfunctions:
=2mh(d,). Accordingly, we scale time as=t/ty and en- A proadenedsy,, (7— 7j) of width 1/Ar picks out orbits

ergy asr=(d,o)E. In these units, the size of the spectral i scaled periodr;~ 7 and anN-periodic Kronecker delta
window considered iar, roughly the total number of bands. 5(n7nj)modN selects periodic orbits with a winding number

The time-domain counterpart o,(E) is the amplitude that differs fromn at most by an integer multiple dM.

w . According to the above interpretation, tig,(7), for 7
am( T)ZJ dr e 2™ d(r/(dyd)- (4 <1, should be related to the classical probabilif@(t) to

- return, aftern windings, in the symmetry-reduced phase
space. Indeed, within the diagonal approximatjds2,18,

By performing another, now discrete, Fourier transform WlthWe derive

respect tof,, [14,17, which amounts to going from the
Bloch phase to the winding-number representation, we de- KGO )= v 7P ( 1t <1 8
fine the amplitude n (D=yPr(rty), 7<L. ®

N—1 Here we have neglected the contribution of repetitions of
A== > expingy)an(7) shorter periodic orbits. We have not taken the occurrence of
N m=o self-retracing orbits into account in order to replace indi-
vidual degeneracy factors, expressing time-reve{salin-
=J do(q+nae|0(7ty)|q), (5)  Variance, by a globay, . Reflecting weak localization as a
uc function of n, it takes the value 2 if orbits witim;=n are

generically T degenerate and 1 otherwise. The winding-
where ae, generates the lattice, withe|=1. Winding- number representation thus enables a direct and natural ac-
number-specific form factors are defined as cess to weak-localization enhancements in the form factor. In
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the Bloch-phase representation, by contrast, weak localizappears as a superposition Mf independent spectra. The
tion is reflected in a smooth transition from Gaussian-condition g,>N? can also be expressed asr/N> 6,
orthogonal-ensembléGOE) statistics near the symmetry where 27/N is the Bloch-phase spacing andy,
points of the Brillouin zone to Gaussian-unitary-ensemble=27/7/g,.is the spectral correlation length with respect to
statistics elsewher,8,9,18. variation of the Bloch phasgs]. Only for g,.<N? does the

In order that an orbit contribute t&°’(t), it must be  arrangement of levels in bands affect the two-point correla-
periodic up to a lattice translation hyae,. Assuming that tions. A number ofNé../27 levels then contribute coher-
the long periodic orbits spread as the generic, nonperiodiently to the spectral correlations on time scatesl. In this
ones, we expresB{®)(t) in terms of the full classical propa- case the second option in EG.0), the ergodic regime of the
gatorp(r’,r;t) as a partial trace, classical dynamics, is irrelevant. In the space-time domain,

this amounts to the diffusion cloud still being well localized

() _ within the chain atr=1. Increasing the chain length beyond
P (D)= fucdr p(r-+na(0,e,.r:1), ©)  N= g, merely results in a finer resolution of the bands.
wherer=(p,q) denotes a point within the unit cell on the IV. QUANTUM BALLISTIC REGIME

energy shel[3]. Equations(8) and(9) show that the gener- . . . . .
alized form factors, in the semiclassical regime, relate th%o Equation(10) was derived using the diagonal approxima

band structure to the full, if coarse-grained, classical propa- n W'.th respect to the c_IassmaI phases. The periodic orbits
gator. occurring in the underlying trace formula are those of the

The validity of Eq.(8) is not restricted to any specific symmetry-reduc_ed space. The break time_ be_zyond which the
form of relaxation of the classical distribution, provided thed'g‘igs‘;';‘]%'efprt’iﬁ’é'rp;t't%l ?Jenziitseczﬂlzoogeevilil\c/jallZnttrI]ere—f(;.re the
underlying classical dynamics is predominantly chaotic. Fo 9 » €9 y,7= 1.

example, billiard chains connected only by narrow bottle- his means that Eq10) describes only the spectral correla-

necks show a marked deviation from normal diffusion on thel©"'S On scales of a typical interband spacing or larger.

time scale of the escape from a single cell. The generalizalherefore, we adopt a different approach Kg(7) for =
tion to higher-dimensional lattices is straightforward. Also >1, corresponding to energy scales of the interband spacing
there,P{)(t) takes forms significantly different from diffu- @nd below. Starting anew from the definitidf), we use
sion in one dimension. Poisson resummation to replace the sum oudsy an inte-

As a specific example, we evaluate H8) for normal ~ 9ral overéd,
diffusion in one extended dimension. For an interval of

lengthL =Na with cyclic boundary conditions, the diffusion ~ _ i . JZW i(n— uN) g —2mir (0)7
equation is solved by the propagatop(x’,x;t) an(7)= 27 #;w 0 doe za: € '
=gmodL)(x” —x,Dt), whereG(MP)(x,0?) denotes a nor- (11)

malized Gaussian of periool and variances?. We assume

that in the nonperiodic dimensions of phase space, the relaxvherer ,(6) =(d,E,(6). For larger the phase of the inte-
ation towards equidistribution is rapid on the relevant timegrand is rapidly oscillating and the integration can be per-
scales. For times<ty=L?/7D, the Thouless time for the formed within an asymptotic approximation. Provided the
full chain of length L, diffusion is free, p(x’,x;t) bandwidth is of the order of the interband spacing, this ap-
=(2mwDt) Y2 exd — (X' —X)%2Dt], while for t>ty, equi- proach is justified for times=1. It will in fact be seen in
distributionp(x’,x;t)=1/L is approached. If, as it is the case Sec. V that this approximation exactly reproduces the large-
here,p(x’,x;t)=p(x’ —x;t), the partial trace of the propa- behavior in the limit ofN—%. For simplicity we disregard
gator amounts to multiplication by the cell size. We find for special cases such as inflection points or higher-order ex-

<1, trema, which can be treated, e.g., by a uniform Bessel-
function approximatiorf19]. Saddle-point integration leads
to the condition
7oy InT omody N GueT
Kn (T) N g N! 7TN2 )
, 271 (0;(v))=v (12
Yn m@7 200, 7'<N2/gucr
= yo1IN >N gy (10 for points 6;(v) of stationary phase, wit=(n—uN)/7.

Replacing dimensionless quantities by unscaled ones gives
the equivalent conditiom (k) =(n— uN)a/t, wherev ,(k)

is the group velocity for the band at quasimomentunk
=fi6/a. It expresses the ballistic motion of Bloch waves.
For 7>1, the phases 2ir ,(6;) 7 left by the saddle-point
integration can be considered random. Upon squaring to ob-
tain the form factors, we therefore drop the off-diagonal con-
zributions and get

introducing the dimensionless parametey,.= N2t /ty
=2m’h{d,D/a? Since we do not require static disorder
and diffusion within the unit cell, the interpretation @f; as

a conductance is purely formal.

With respect tog,. and N, we distinguish two regimes.
For g,N?, the classical dynamics becomes ergodic befor
the energy-time uncertainty relation allows us to resolve th
interband spacing {d,). The sampling by the discrete o
Bloch phases is then too coarse to reveal the continuous Rn(r)=ﬁ 2 F(n_MN), 13
bands underlying the discrete levels and the full spectrum T p=—o T
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where F(v)=(472Ar) '3 ,3[ri(6;(v))| "' is a positive
function depending om and 7 only through — uN)/7.
Similar to what we found forr<1, theK,(7) can be inter-
preted as sums of winding-number distributidh&/(n, 7)),
each of which is stretching from a centemat N, but now
as alinear function of time, so that the varianee® grows

guadratically. They are normalized by the common prefactor
1/7. In order to determine the as yet unknown function

F(v), we use a heuristic argument in the spirit of R¢fs2,
4] and extrapolate both the semiclassical expres&iohand
Eq. (13) towards7= 1. Expanding

7- oo
= Yn \/E E exp

uc u=—

N Quc7

~ YnT
(s0 — (mod 1)
Kn™(n) =" 9 (N'WN2>

W(n—MN)Z)
-, 14
( 279yc (14
we match Eq(10) with Eq. (13) at 7=1,
- 1 - m(n—uN)?
2 F(n—uN)= E ex ——).
=0 # V2Qye k=" 29uc

(15
Comparing both sums term by term, we obtak(v)

=(29y) Y2 exp(— m4/29,9 and thus, for the regimer
>1,

In the presence of additional symmetries, the spectral stati

N gur?

N’ 7N?

Kn(7)= % g(m"d”( (16)

of the symmetry pointgcf. the discussion of the quantum
kicked rotor below. In this case, an analogous matching
procedure applies.

For the long-time behavior of the entire settof(7), Eq.
(16) implies the following scenario. InitiallyK,(7) decays
as 1f as long as only the term witp=0 contributes sig-
nificantly. As terms with largej attain a comparable mag-
nitude, allK () approach an asymptotic constant/N [an
exact evaluatiofi18] gives a correction-2/N? in the pres-
ence of the band symmetd._,(E)=d(E) if N is even.
The asymptotic domain is reached @t N+ 7/g,. This is

the effective Thouless time for ballistic spreading. It corre-
®rhis implies in particular thako(7) = 1//2g 7.

sponds to the time when the uncertainty relation allows th
resolution of the typical separationn2(N6,{d,)) of
neighboring discrete levels. It will be shown in the following
that the expressiofil6) reproduces the numerical data sur-
prisingly well for 7> 1.
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+N/4

-N/4 n=0

FIG. 1. Space-time dependence of the theoretical prediction for
K,(7) according to Eqs(10) and (16) for N=512.

being kept fixed, is proportional té.,,, and independent of
N. Therefore, in the regimeg,<N? where proper bands

exist, there is a crossover during whiiy(7) decays by a
factor of the order oN#6.,. Thus, together with its rise in

the initial, semiclassical regimé&(7) attains a peak in the
vicinity of r=1 that expresses thausteringof levels into
bands[7]. The stationary-phase conditiqti2), with ©=0
(only this term contributes near= 1), shows that the peak is
associated with the extremal points in the bands, that is, with
the van Hove singularitief20] in the full spectral density
d(E).

Finally, we note that for smalN, in particular forN=2,
the coarse-grained density relaxation does not follow a dif-
fusion law if there is no static disorder within the cells. An
evaluation of the semiclassical and the quantum domains
along similar lines as sketched here gives access to the sta-
tistics of tunnel splittings in double billiards.

S-
tics can be that of the GOE throughout the Brillouin zone,
possibly with weak localization enhancements in the vicinity

V. THE LARGE- N LIMIT

In the present section we discuss the limithdf>co. In
this limit, our results simplify considerably, since only the
term u=0 contributes in Eq913) and(14). For short times
=1 the K,(7) can be replaced by a single, diffusively
spreading Gaussian as given in the second line of Hj). In
the long-time regimer=1, we obtain

Ro(r)= 1 p( i 2) (17)
= exp — - ].
7 V2QucT 2Quc | T

The same limiting behavior has been calculated within the
framework of a nonlineas- model[5]. We shall now com-
pare Eq.(17) with the corresponding results in R¢&]. We
make use of the fact that the Bloch phasean be viewed as

Figure 1 summarizes our results for the time dependencg generalized Aharonov-Bohm flux and in the present limit

of theK,,(7). We can identify three distinct time regimes: a

becomes a continuous variable. Accordingly, we replace

semiclassical phase where the form factors reflect the classi (r) by d(r, 6). For simplicity, we restrict ourselves to the
cal diffusive spreading, a regime dominated by quantal balcase of broken time-reversal invariance throughout the Bril-
listic motion, and an asymptotic regime reflecting the dis-louin zone. This corresponds tg,=1 for all n. In order to
creteness of the spectrum on the finest energy scales. Thesgable a full quantitative comparison with RES], we had

long-time asymptotes vanish for larfeas 1N. At the same
time, the maximum oK y(7) nearr=1, all other parameters

to calibrate the dimensionless conductance on basis of a
common definition: In the present limit and fe¥- 1, we find
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same value as that underlying the data in Fig).4 > =
e N T A

e e N
N =
the following relation between the variance of the level ve- <~ = = 7

locities, the second moment of tﬁé](q-) with respect ton, -3 ) -1 0 1 2 30
and the conductance:

FIG. 3. Quasienergy bands pertaining to chaotic Bloch states of

dr,(6)\? “on?_ g the quantum kicked rotor, fde=300 andr=4/75, corresponding
2 [ _ _ uc
am do - nZ 2 Kn(7)= T (18) to a periodic potential with a unit cell that accommodates 75 Bloch
ao N7 states.

In Ref. [5], the following expression is obtained for the
flux-averaged correlation function:
ing since recently it has been showWg1-23 that the

(d(r,0)d(r+r,6+0)); 5—1 random-matrix approach underlying E4.9) also applies to
o e d) ud 012 \2 systems where the disorder is of dynamical origin.
“a [, Tl -z -3
2 2 VI. NUMERICAL RESULTS AND DISCUSSION
—ex;{—g—uc[i} TN+ = )]cos{r)\). (19
w |2m 2 In the remainder, we compare the theory sketched in the

A ion foRk . hed by a Fourier t ¢ previous sections to two prototypical yet quite different mod-
t'n exg;essmn ?t ”(T)d's rfhac N tytg ourﬁr rgr_\ﬁ OfMa- g5, Our first example is the kicked rotor on a tof@4],
ion with respect ta and with respect t@ over the Brillouin o by its Hamiltonian

zone. The discrete spatial Fourier transform cannot be ap-
plied directly to Eq.(19) since this expression violates peri-
odicity in 6. Instead, exploiting the fact that this expression (1=\)? o
decays to zero fop—, we approximate the Fourier sum Gy &

T ! : i H(l,9;t)= +V, (O S(t—mr). (21
over the Brillouin zone by a continuous Fourier transforma- ( ) 2 K )mzz_x ( n- (2D
tion over the whole real axis. We obtain

It is periodically time dependent, so the spectrum and eigen-
{®Pn(xs) = Pn(x-)}, (20 states are adequately discussed in terms of quasienergies and

Floquet states, respectively. The kicked rotor attains period-
with ®,(x)=mn erf(n/2yX) + 2\/7x exp(~n%4x) and x. icity also in the angular-momentum variabléf the param-
=(2m) g, T 7. eter 7, an effective quantum of action, is chosen as

We have checked analytically and numericalsig. 2 =4mp/q, with p,q coprime(here we restrict them further to

that for both—0 andr—, Eq.(20) coincides asymptoti- p=1 andq odd). The unit cell then accommodatgsjuanta
cally with our results. Only in the vicinity of=1 do devia- of angular momentum. The number of guasienergy bands
tions exist[e.g., from Eq.(17) we find Ko(1)=1/\/29,,  (for a typical sample, see Fig) & alsoqg. It is analogous to
while Eq. (20) givesKo(1)=1/\/g,s cf. Fig. 2]. The close the total number of bandsr introduced above.
agreement between the respective results provides further The quasienergies are obtained by diagonalizing the
support for the matching procedure we used to connect theymmetry-projected Floquet operator at Bloch phake
short- and long-time regimes. This agreement is not surprig-24],

Rn(7'):

29ycT
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<|'|Um||>:exp(—2wi gu—)\)z)

q-1
X 2 efiva’k([0m+2ﬂ-n]/q)ei(l7|’)(0m+2ﬂ'n)/q_
n=0

o -

(22

For the kicked rotor on a torus, the number of unit cells is
simply determined by the numbét of Bloch phases where
Eq. (22) is evaluated. This additional parameter is indepen-
dent ofq, the number of bands. The total number of levels in
the spectrum is therefodq.

In addition to being periodic ih andl’, the Floquet ma-
trix (22) allows for several twofold symmetrig24—-24. In
order to break them in a controlled manner without signifi-
cantly altering the classical diffusion, an angular-momentum
shift by N has been introduced and the potential has been
chosen a$25]

T 19+l ) T
co aE Ccos Esm aE

sin 21‘}}.
(23

Var(9)=k

FIG. 4. (a) Form factorsK ,(7) for the kicked rotor on a torus at
(from top to bottom n=0,16,32,...,256=512), compared to the
theory (heavy lineg. The parameters determinirg,. are, in the
ﬁotation of Ref[1], 7=4m/225 (dimensionless quantum of action,
. . o not to be confounded with the scaled time used in this paged
which | ——1I, §—27—9, andt—t; and an antiunitary | _3nq givingg,.= 200m. All twofold antiunitary symmetries are

one, time reversal, in whichl——1I, §—9, andt——t. P qren (b) is analogous tea), but for a billiard chain composed of
invariance is broken fom#0L/2, i.e., off the band center N=128 unit cells(insed. The winding numbers shown ane=0, 2,

and edges. Therefore, far=\ =0, the quasienergy statistics 4, g, 16, 32, and 64. The only free parameter of the thegryvas
corresponds to the superposition of two independent circulagetermined by an independent classical simulafis].
orthogonal ensembld€OE’s) atm=0,=L/2 and to a single
COE elsewhere. Choosing+ 0 breaksP also at the sym-
metry points and at the same time lifts the band symmetry s
that COE statistics becomes valid throughout the Brillouin

zone. 1F A takes, a nonlnt_eg?rAvalué',_mvarlance, whph Provided that trajectories traversing the unit cell without hit-
amounts to(—1"[Up|=1)=(I"|Uy[l), is broken. In this 5 the obstacles are excluded by an appropriate geometry,
case, the quasienergy statistics is that of the circular unitary,o’ c|assical dynamics is diffusive on scales larger than the
ensemble(CUE) everywhere or that of wo superposed gjzq of the unit cell. The energy bands can be found using the
CUE’s at the symmetry points #=0. scattering approach to billiard quantization; see [REf] for
Sufficiently large spectral data sets have been generategliails of the method. The shape of the unit cell is chosen
by varyingk over szmqll intervals so that the classical diffu- gch that there are no other unitary symmetries besides the
sion constanD ~k®/2 is not changed appreciably. The pa- giscrete translation invariance. However, due to time-
rametersN, g, andk were chosen such that the scale of jeyersal invariance, the bands are symmetric with respect to
localization due to disorder within the unit c¢8,24] by far  y—_ o and = such thaty,=yn,=2 and otherwisey,=1.
exceeds'the c_eII size. In Fig(a we show, for both twofold Figure 4b), which is analogous to Fig.(d), clearly shows
symmetries simultaneously brokéa=0.2, A =0.5), the set the corresponding enhancements ’Iéf)(T) and RN/Z(T)

of Ky(7) as a function ofr at selected equidistant values of {hyqughout the three regimes. Correspondingly, the spectral
n and compare with our theorjEgs. (10) and (16)]. The  gatistics for fixed Bloch number follows the COE at the
three time regimes and the corresponding power-law tim@enter and the edge of the Brillouin zone and approaches the
dependences dfy(7) can clearly be distinguished. Compar- CUE in betweer{18].
ing with the nonlineaww-model result45] [Eqg. (20) and the Our theoretical results reproduce remarkably well the nu-
dashed lines in Fig. 2 we find that nearr=1, they repro- merical data obtained for the two models. This lends support
duce the data even better, including an unexpected featute the approximations underlying the theory and corroborates
such as the sharp peakrat0, 7=1. The saturation regime its conclusions. The largh- limit is of particular interest
=N m/g,, however, is not contained in ERO). because it provides a very sensitive tool for studying the
Our second example is a billiard chain composed of unitransition to Anderson localization when the periodicity is
cells as shown in the inset in Fig(l. The wave functions disrupted by disorder. In the latter case, the level statistics

For a=A=m=0, which classically corresponds to the
common standard map, the kicked rotor possesses two ind
pendent twofold symmetries: a unitary one, the paFfyin

atisfy the Helmholtz equation augmented with Dirichlet
oundary conditions on the channel walls and periodic
boundary conditions along the channel afté¢runit cells.
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approaches the Poissonian limit and the corresponding spette weak-localization peak to a weak magnetic fi@f]. A
tral form factor approaches the constant value 1 in the longdetailed analysis of this scenario will be left for further
time limit. This is in a marked difference from the periodic study.

case, wher&o(r)mllr for 7=1/N. The transition between
these two rather distinct asymptotics occurs as a smooth
function of the degree of disorder. In order to understand this The research reported in this work was supported by
transition in semiclassical terni4,2], one may discuss the grants from the Minerva Center for Nonlinear Physics. T.D.,
effect of weak disorder through the small random difference®.M., and H.S. would like to thank the Weizmann Institute
between the phases assigned to periodic orbits that were ref Science, Rehovot, and U.S. would like to thank the Max
lated by symmetry in the absence of disorder. This approacRlanck Institute for Physics of Complex Systems, Dresden,
is similar to the semiclassical discussion of the response dbr the kind hospitality enjoyed during several visits.
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