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Signature of chaotic diffusion in band spectra
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We investigate the two-point correlations in the band spectra of periodic systems that exhibit chaotic
diffusion in the classical limit, in terms of form factors with the winding number as a spatial argument. For
times below the Heisenberg time, they contain the full space-time dependence of the classical propagator. They
approach constant asymptotes via a regime, reflecting quantal ballistic motion, where they decay by a factor
proportional to the number of unit cells. We derive a universal scaling function for the long-time behavior. In
the limit of long chains, our results are consistent with expressions obtained by field-theoretical methods. They
are substantiated by numerical studies of the kicked rotor and a billiard chain.@S1063-651X~98!03601-0#

PACS number~s!: 05.45.1b, 03.65.Sq, 73.20.Dx
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I. INTRODUCTION

A large class of systems, among them most promine
solid-state systems, are organized as repetitions of iden
or near-identical units. If in such a system theclassicaldy-
namics is chaotic and the unit cells are connected, then
bally this leads to a diffusive spreading of trajectories, ir
spective of the presence or absence of static disor
Regular motion on tori does not contribute to diffusi
spreading: Closed tori do not allow for transport along
lattice, while open tori give rise to ballistic spreading. T
spectral and transport properties of extendedquantumsys-
tems, in contrast, depend sensitively on the degree of tr
lational symmetry. On short time scales, however, where
quantum dynamics still closely follows the classical, bo
periodic and disordered quantum systems exhibit~apart from
an initial ballistic phase that is of no interest for the follow
ing! a spreading of wave packets with the characteristics
the chaotic diffusion in their classical counterparts. The s
nature of this phase in the discrete spectra of disordered
tems with Anderson-localized eigenstates has been inv
gated previously@1,2#, using techniques in the spirit o
Berry’s semiclassical derivation@3,4# of the spectral form
factors for the canonical random-matrix ensembles.

In the present work, we report on a study of period
systems with band spectra and eigenstates of Bloch fo
focusing on the signature of spatial order and dynamical
order in the spectral two-point correlations. We exploit t
existence of a second conserved quantum number in add
to the energy, the quasimomentum, to define form factor
the canonically conjugate space spanned by time and w
ing number. They are related to the spatially coarse-grai
propagator and therefore ideally suited to extract dynam
information from the band structure, without recurring to
local spectrum. Here we evaluate this relation over the en
time evolution of the form factors. In the semiclassical
gime, we show that the full space and time dependenc
the classical propagator is contained in the form factors. C
otic diffusion in spatially periodic quantum systems can th
571063-651X/98/57~1!/359~7!/$15.00
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directly be identified in the band structure. Similarly, th
spectral signature of the crossover to quantum ballistic m
tion can be analyzed on basis of the full quantum propaga
In the limit of a large number of unit cells, the form facto
exhibit a marked peak in the vicinity of the Heisenberg tim
a consequence of the clustering of levels in quasicontinu
bands. We obtain a universal scaling function for the lon
time behavior.

Form factors containing the correlations of levels acro
the Brillouin zone previously have been studied using
supermatrix nonlinears model @5,6#. Our approach is
complementary in that it emphasizes the important conc
of winding numbers, providing direct access to spatial inf
mation. In combination with semiclassical techniques, t
allows us to draw a particularly transparent picture of t
physics over all time regimes. We shall demonstrate tha
the case of diffusive spreading and in the limit of an infin
number of unit cells, our theory allows us to reproduce
principal results of thes-model approach. At the same tim
however, we are able to go beyond those results in that
need not make any assumptions as to the number of unit
in the system nor on the mode of density relaxation.

Our theory therefore applies to a broad class of syste
They include semiconductor superlattices supporting cha
electron motion~‘‘antidot arrays’’! @7–10#, quantum-optical
systems involving periodically modulated standing-wa
fields @11#, and Kolmogorov-Arnold-Moser systems with to
roidal chaotic layers in phase space containing chains
regular resonance islands, as they occur frequently in m
ecules@12#. For this type of system, there exists a large bo
of spectral data, both experimental and numerical@7–12#. By
analyzing these data as explained in the following, the
namical information encoded in the respective band str
tures can be extracted.

II. GENERALIZED FORM FACTOR

The setup we have in mind is a finite chain ofN identical
unit cells, with cyclic boundary conditions at its ends. Spa
359 © 1998 The American Physical Society
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disorder within the unit cell isnot required. We restrict our-
selves to quasi-one-dimensional lattices since the genera
tion to higher dimensions is straightforward.

As a consequence of periodicity, the spectrum can be
composed intoN subsets, each of which corresponds to o
of the N irreducible representations of the group of latti
translationsT̂(naex), with n an integer. Together these su
spectra coalesce into discretized bands and approach
tinuous bands in the limitN→`. Dynamical and spectra
quantities specific to one of the irreducible representati
@13,14# are constructed using the projectors

P̂m5
1

N (
n50

N21

xm~n!T̂†~naex! ~1!

onto the corresponding subspaces. They invoke the gr
characters xm(n)5exp(inum). We refer to the um
52pm/N, m50,...,N21, as Bloch phases. The symmetr
projected Green’s function is defined as

Ĝm~E!5 P̂mĜ~E!, ~2!

whereĜ(E) is the Green’s function for the full chain. From
Ĝm(E), other Bloch-phase-specific quantities can be deri
as if they pertained to the full spectrum of a system with
spatial symmetry. For example, the Bloch-phase-spec
spectral density is related to the trace of the correspond
Green’s function~2! in the usual way~see, e.g., Ref.@15#!,

dm~E!5(
a

d„E2Ea~um!…52
1

p
Im tr@Ĝm~E!#. ~3!

Here the trace extends only over a single unit cell.
The basic energy scale in the following is the inver

mean spectral densityper unit cell 1/̂ duc& or, equivalently,
the mean separation of neighboring bands. We define
the Heisenberg time with respect to the unit celltH
52p\^duc&. Accordingly, we scale time ast5t/tH and en-
ergy asr 5^duc&E. In these units, the size of the spectr
window considered isDr , roughly the total number of bands

The time-domain counterpart ofdm(E) is the amplitude

am~t!5E
2`

`

dr e22p ir tdm~r /^duc&!. ~4!

By performing another, now discrete, Fourier transform w
respect toum @14,17#, which amounts to going from the
Bloch phase to the winding-number representation, we
fine the amplitude

ãn~t!5
1

N (
m50

N21

exp~ inum!am~t!

5E
uc

dq^q1naexuÛ~ttH!uq&, ~5!

where aex generates the lattice, withuexu51. Winding-
number-specific form factors are defined as
a-

e-
e

on-

s

up

d
t
c
g
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l

e-

K̃n~t!5
1

Dr
u ãn~t!u2. ~6!

Substituting Eq.~5! shows that theK̃n(t) comprise pairs of
levels with all Bloch phases. In particular,K̃0(t) corre-
sponds to the form factor for the entire spectrum, irrespec
of spatial periodicity. Equation~5! represents a partial trac
of the propagatorÛ. The K̃n(t) can therefore be interprete
as probabilities to return after encircling the unit celln times.

III. SEMICLASSICAL REGIME

A semiclassical account of the symmetry-projected sp
tral quantities is achieved on the basis of a generalized c
cept of periodic orbits@13,16,17#. It becomes transparent in
symmetry-reduced representation of the chain, where the
boundaries of the unit cell connected by the translatio
symmetry are identified. In this way, the unit cell assum
the topology of an annulus, possibly times additional dime
sions. An orbit periodic in this reduced space can be cla
fied according to its topology, expressed by its winding nu
ber, the number of times it runs around the unit cell befo
closing. The contribution of a periodic orbitj to dm(E) con-
tains the additional phase2njum , wherenj is the winding
number of this orbit@13,16,17#. By the two Fourier trans-
forms that lead fromdm(E) to ãn(t), we obtain the semi-
classical trace formula

ãn~t!5(
j

t j
~p!

Audet~Mj2I!u
expS i

Sj~E!

\
1 im j

p

2 D
3d1/Dr~t2t j !d~n2nj !mod N , ~7!

with t j
(p) , Mj , Sj , andm j denoting, respectively, the primi

tive period, monodromy matrix, action, and Maslov index
the periodic orbitj . In addition to the usual amplitude an
phase factors, this trace formula has attained twod functions:
A broadenedd1/Dr(t2t j ) of width 1/Dr picks out orbits
with scaled periodt j't and anN-periodic Kronecker delta
d (n2nj )mod N selects periodic orbits with a winding numbe

that differs fromn at most by an integer multiple ofN.
According to the above interpretation, theK̃n(t), for t

,1, should be related to the classical probabilitiesPn
(cl)(t) to

return, aftern windings, in the symmetry-reduced pha
space. Indeed, within the diagonal approximation@1,2,18#,
we derive

K̃n
~sc!~t !5gntPn

~cl!~ttH!, t,1. ~8!

Here we have neglected the contribution of repetitions
shorter periodic orbits. We have not taken the occurrenc
self-retracing orbits into account in order to replace in
vidual degeneracy factors, expressing time-reversal~T! in-
variance, by a globalgn . Reflecting weak localization as
function of n, it takes the value 2 if orbits withnj5n are
generically T degenerate and 1 otherwise. The windin
number representation thus enables a direct and natura
cess to weak-localization enhancements in the form facto
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57 361SIGNATURE OF CHAOTIC DIFFUSION IN BAND SPECTRA
the Bloch-phase representation, by contrast, weak loca
tion is reflected in a smooth transition from Gaussia
orthogonal-ensemble~GOE! statistics near the symmetr
points of the Brillouin zone to Gaussian-unitary-ensem
statistics elsewhere@5,8,9,18#.

In order that an orbit contribute toPn
(cl)(t), it must be

periodic up to a lattice translation bynaex . Assuming that
the long periodic orbits spread as the generic, nonperio
ones, we expressPn

(cl)(t) in terms of the full classical propa
gatorp(r 8,r ;t) as a partial trace,

Pn
~cl!~ t !5E

uc
dr p„r1na~0,ex!,r ;t…, ~9!

where r5(p,q) denotes a point within the unit cell on th
energy shell@3#. Equations~8! and ~9! show that the gener
alized form factors, in the semiclassical regime, relate
band structure to the full, if coarse-grained, classical pro
gator.

The validity of Eq. ~8! is not restricted to any specifi
form of relaxation of the classical distribution, provided t
underlying classical dynamics is predominantly chaotic. F
example, billiard chains connected only by narrow bott
necks show a marked deviation from normal diffusion on
time scale of the escape from a single cell. The general
tion to higher-dimensional lattices is straightforward. Al
there,Pn

(cl)(t) takes forms significantly different from diffu
sion in one dimension.

As a specific example, we evaluate Eq.~8! for normal
diffusion in one extended dimension. For an interval
lengthL5Na with cyclic boundary conditions, the diffusio
equation is solved by the propagatorp(x8,x;t)
5G(mod L)(x82x,Dt), whereG(mod p)(x,s2) denotes a nor-
malized Gaussian of periodp and variances2. We assume
that in the nonperiodic dimensions of phase space, the re
ation towards equidistribution is rapid on the relevant tim
scales. For timest!td5L2/pD, the Thouless time for the
full chain of length L, diffusion is free, p(x8,x;t)
5(2pDt)21/2 exp@2(x82x)2/2Dt#, while for t@td , equi-
distributionp(x8,x;t)51/L is approached. If, as it is the cas
here,p(x8,x;t)5p(x82x;t), the partial trace of the propa
gator amounts to multiplication by the cell size. We find f
t,1,

K̃n
~sc!~t !5

gnt

N
G~mod 1!S n

N
,

guct

pN2D
5H gnAt/2guce

2pn2/2guct, t!N2/guc,

gnt/N, t@N2/guc,
~10!

introducing the dimensionless parameterguc5N2tH /td
52p2\^duc&D/a2. Since we do not require static disord
and diffusion within the unit cell, the interpretation ofguc as
a conductance is purely formal.

With respect toguc and N, we distinguish two regimes
For guc@N2, the classical dynamics becomes ergodic bef
the energy-time uncertainty relation allows us to resolve
interband spacing 1/^duc&. The sampling by the discret
Bloch phases is then too coarse to reveal the continu
bands underlying the discrete levels and the full spectr
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appears as a superposition ofN independent spectra. Th
condition guc@N2 can also be expressed as 2p/N@ucorr,
where 2p/N is the Bloch-phase spacing anducorr

52pAp/guc is the spectral correlation length with respect
variation of the Bloch phase@6#. Only for guc!N2 does the
arrangement of levels in bands affect the two-point corre
tions. A number ofNucorr/2p levels then contribute coher
ently to the spectral correlations on time scalest<1. In this
case the second option in Eq.~10!, the ergodic regime of the
classical dynamics, is irrelevant. In the space-time dom
this amounts to the diffusion cloud still being well localize
within the chain att51. Increasing the chain length beyon
N5Aguc merely results in a finer resolution of the bands.

IV. QUANTUM BALLISTIC REGIME

Equation~10! was derived using the diagonal approxim
tion with respect to the classical phases. The periodic or
occurring in the underlying trace formula are those of t
symmetry-reduced space. The break time beyond which
diagonal approximation ceases to be valid is therefore
Heisenberg time for the unit celltH or, equivalently,t51.
This means that Eq.~10! describes only the spectral correl
tions on scales of a typical interband spacing or larg
Therefore, we adopt a different approach toK̃n(t) for t
.1, corresponding to energy scales of the interband spa
and below. Starting anew from the definition~5!, we use
Poisson resummation to replace the sum overm by an inte-
gral overu,

ãn~t!5
1

2p (
m52`

` E
0

2p

du ei ~n2mN!u(
a

e22p ir a~u!t,

~11!

wherer a(u)5^duc&Ea(u). For larget the phase of the inte
grand is rapidly oscillating and the integration can be p
formed within an asymptotic approximation. Provided t
bandwidth is of the order of the interband spacing, this
proach is justified for timest*1. It will in fact be seen in
Sec. V that this approximation exactly reproduces the largt
behavior in the limit ofN→`. For simplicity we disregard
special cases such as inflection points or higher-order
trema, which can be treated, e.g., by a uniform Bess
function approximation@19#. Saddle-point integration lead
to the condition

2pr a8 „u j~n!…5n ~12!

for points u j (n) of stationary phase, withn5(n2mN)/t.
Replacing dimensionless quantities by unscaled ones g
the equivalent conditionva(k)5(n2mN)a/t, whereva(k)
is the group velocity for the banda at quasimomentumk
5\u/a. It expresses the ballistic motion of Bloch wave
For t.1, the phases 2p ir a(u j )t left by the saddle-point
integration can be considered random. Upon squaring to
tain the form factors, we therefore drop the off-diagonal co
tributions and get

K̃n~t!5
gn

t (
m52`

`

FS n2mN

t D , ~13!
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where F(n)5(4p2Dr )21(a( j ur a9 „u j (n)…u21 is a positive
function depending onn and t only through (n2mN)/t.
Similar to what we found fort,1, theK̃n(t) can be inter-
preted as sums of winding-number distributionsF„n(n,t)…,
each of which is stretching from a center atn5mN, but now
as alinear function of time, so that the variances2 grows
quadratically. They are normalized by the common prefac
1/t. In order to determine the as yet unknown functi
F(n), we use a heuristic argument in the spirit of Refs.@1,2,
4# and extrapolate both the semiclassical expression~10! and
Eq. ~13! towardst51. Expanding

K̃n
~sc!~t !5

gnt

N
G~mod 1!S n

N
,

guct

pN2D5gnA t

2guc
(

m52`

`

exp

S 2
p~n2mN!2

2tguc
D , ~14!

we match Eq.~10! with Eq. ~13! at t51,

(
m52`

`

F~n2mN!5
1

A2guc
(

m52`

`

expS 2
p~n2mN!2

2guc
D .

~15!

Comparing both sums term by term, we obtainF(n)
5(2guc)

21/2 exp(2pn2/2guc) and thus, for the regimet
.1,

K̃n~t!5
gn

N
G~mod 1!S n

N
,
guct

2

pN2 D . ~16!

In the presence of additional symmetries, the spectral st
tics can be that of the GOE throughout the Brillouin zon
possibly with weak localization enhancements in the vicin
of the symmetry points~cf. the discussion of the quantum
kicked rotor below!. In this case, an analogous matchi
procedure applies.

For the long-time behavior of the entire set ofK̃n(t), Eq.
~16! implies the following scenario. Initially,K̃0(t) decays
as 1/t as long as only the term withm50 contributes sig-
nificantly. As terms with largerm attain a comparable mag
nitude, allK̃n(t) approach an asymptotic constantgn /N @an
exact evaluation@18# gives a correction22/N2 in the pres-
ence of the band symmetryd2m(E)5dm(E) if N is even#.
The asymptotic domain is reached att'NAp/guc. This is
the effective Thouless time for ballistic spreading. It cor
sponds to the time when the uncertainty relation allows
resolution of the typical separation 2p/(Nucorr̂ duc&) of
neighboring discrete levels. It will be shown in the followin
that the expression~16! reproduces the numerical data su
prisingly well for t.1.

Figure 1 summarizes our results for the time depende
of the K̃n(t). We can identify three distinct time regimes:
semiclassical phase where the form factors reflect the cla
cal diffusive spreading, a regime dominated by quantal b
listic motion, and an asymptotic regime reflecting the d
creteness of the spectrum on the finest energy scales. T
long-time asymptotes vanish for largeN as 1/N. At the same
time, the maximum ofK̃0(t) neart51, all other parameters
r

is-
,

-
e

ce

si-
l-
-
ese

being kept fixed, is proportional toucorr and independent o
N. Therefore, in the regimeguc!N2 where proper bands
exist, there is a crossover during whichK̃0(t) decays by a
factor of the order ofNucorr. Thus, together with its rise in
the initial, semiclassical regime,K̃0(t) attains a peak in the
vicinity of t51 that expresses theclusteringof levels into
bands@7#. The stationary-phase condition~12!, with m50
~only this term contributes neart51!, shows that the peak is
associated with the extremal points in the bands, that is, w
the van Hove singularities@20# in the full spectral density
d(E).

Finally, we note that for smallN, in particular forN52,
the coarse-grained density relaxation does not follow a
fusion law if there is no static disorder within the cells. A
evaluation of the semiclassical and the quantum doma
along similar lines as sketched here gives access to the
tistics of tunnel splittings in double billiards.

V. THE LARGE- N LIMIT

In the present section we discuss the limit ofN→`. In
this limit, our results simplify considerably, since only th
termm50 contributes in Eqs.~13! and~14!. For short times
t&1 the K̃n(t) can be replaced by a single, diffusive
spreading Gaussian as given in the second line of Eq.~10!. In
the long-time regimet*1, we obtain

K̃n~t!5
gn

A2guct
expS 2

p

2guc
Fn

t G2D . ~17!

This implies in particular thatK̃0(t)51/A2guct.
The same limiting behavior has been calculated within

framework of a nonlinears model @5#. We shall now com-
pare Eq.~17! with the corresponding results in Ref.@5#. We
make use of the fact that the Bloch phaseu can be viewed as
a generalized Aharonov-Bohm flux and in the present lim
becomes a continuous variable. Accordingly, we repla
dm(r ) by d(r ,u). For simplicity, we restrict ourselves to th
case of broken time-reversal invariance throughout the B
louin zone. This corresponds togn51 for all n. In order to
enable a full quantitative comparison with Ref.@5#, we had
to calibrate the dimensionless conductance on basis o
common definition: In the present limit and fort@1, we find

FIG. 1. Space-time dependence of the theoretical prediction

K̃n(t) according to Eqs.~10! and ~16! for N5512.
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the following relation between the variance of the level v
locities, the second moment of theK̃n(t) with respect ton,
and the conductance:

4p2K S dra~u!

du D 2L
a,u

5 (
n52`

`
n2

t2 K̃n~t!5
guc

p
. ~18!

In Ref. @5#, the following expression is obtained for th
flux-averaged correlation function:

^d~ r̄ , ū !d~ r̄ 1r , ū 1u!& r̄ , ū 21

5
2p

gucu
2 E

0

` dl

l H expS 2
guc

p F u

2pG2Upl2
l2

2 U D
2expS 2

guc

p F u

2pG2Upl1
l2

2 U D J cos~rl!. ~19!

An expression forK̃n(t) is reached by a Fourier transform
tion with respect tor and with respect tou over the Brillouin
zone. The discrete spatial Fourier transform cannot be
plied directly to Eq.~19! since this expression violates per
odicity in u. Instead, exploiting the fact that this expressi
decays to zero foru→`, we approximate the Fourier sum
over the Brillouin zone by a continuous Fourier transform
tion over the whole real axis. We obtain

K̃n~t!5
1

2guct
$Fn~x1!2Fn~x2!%, ~20!

with Fn(x)5pn erf(n/2Ax)12Apx exp(2n2/4x) and x6

5(2p)21gucut6t2u.
We have checked analytically and numerically~Fig. 2!

that for botht→0 andt→`, Eq. ~20! coincides asymptoti-
cally with our results. Only in the vicinity oft51 do devia-
tions exist @e.g., from Eq.~17! we find K̃0(1)51/A2guc,
while Eq. ~20! gives K̃0(1)51/Aguc; cf. Fig. 2#. The close
agreement between the respective results provides fu
support for the matching procedure we used to connect
short- and long-time regimes. This agreement is not surp

FIG. 2. Comparison of the form factorsK̃n(t) in the limit
N→`, according to Eqs.~10! and ~17! ~solid lines!, to the corre-
sponding functions as implied by the results of Ref.@5#; cf. Eq.~19!
~dashed lines!. The graphs shown are for~from top to bottom! n
50,16,32,...,256. The dimensionless conductance isguc5200p, the
same value as that underlying the data in Fig. 4~a!.
-

p-

-

er
e

s-

ing since recently it has been shown@21–23# that the
random-matrix approach underlying Eq.~19! also applies to
systems where the disorder is of dynamical origin.

VI. NUMERICAL RESULTS AND DISCUSSION

In the remainder, we compare the theory sketched in
previous sections to two prototypical yet quite different mo
els. Our first example is the kicked rotor on a torus@24#,
defined by its Hamiltonian

H~ l ,q;t !5
~ l 2l!2

2
1Va,k~q! (

m52`

`

d~ t2mt!. ~21!

It is periodically time dependent, so the spectrum and eig
states are adequately discussed in terms of quasienergie
Floquet states, respectively. The kicked rotor attains per
icity also in the angular-momentum variablel if the param-
eter t, an effective quantum of action, is chosen ast
54pp/q, with p,q coprime~here we restrict them further to
p51 andq odd!. The unit cell then accommodatesq quanta
of angular momentum. The number of quasienergy ba
~for a typical sample, see Fig. 3! is alsoq. It is analogous to
the total number of bandsDr introduced above.

The quasienergies are obtained by diagonalizing
symmetry-projected Floquet operator at Bloch phaseum

@24#,

FIG. 3. Quasienergy bands pertaining to chaotic Bloch state
the quantum kicked rotor, fork5300 andt54p/75, corresponding
to a periodic potential with a unit cell that accommodates 75 Blo
states.
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^ l 8uÛmu l &5expS 22p i
p

q
~ l 2l!2D

3
1

q (
n50

q21

e2 iVa,k~@um12pn#/q!ei ~ l 2 l 8!~um12pn!/q.

~22!

For the kicked rotor on a torus, the number of unit cells
simply determined by the numberN of Bloch phases where
Eq. ~22! is evaluated. This additional parameter is indep
dent ofq, the number of bands. The total number of levels
the spectrum is thereforeNq.

In addition to being periodic inl and l 8, the Floquet ma-
trix ~22! allows for several twofold symmetries@24–26#. In
order to break them in a controlled manner without sign
cantly altering the classical diffusion, an angular-moment
shift by l has been introduced and the potential has b
chosen as@25#

Va,k~q!5kFcosS a
p

2 D cosq1
1

2
sinS a

p

2 D sin 2qG .
~23!

For a5l5m50, which classically corresponds to th
common standard map, the kicked rotor possesses two i
pendent twofold symmetries: a unitary one, the parityP, in
which l→2 l , q→2p2q, and t→t; and an antiunitary
one, time reversalT, in which l→2 l , q→q, andt→2t. P
invariance is broken formÞ0 L/2, i.e., off the band cente
and edges. Therefore, fora5l50, the quasienergy statistic
corresponds to the superposition of two independent circ
orthogonal ensembles~COE’s! at m50,6L/2 and to a single
COE elsewhere. ChoosingaÞ0 breaksP also at the sym-
metry points and at the same time lifts the band symmetry
that COE statistics becomes valid throughout the Brillo
zone. If l takes a noninteger value,T invariance, which
amounts to^2 l 8uÛmu2 l &5^ l 8uÛmu l &, is broken. In this
case, the quasienergy statistics is that of the circular uni
ensemble~CUE! everywhere or that of two superpose
CUE’s at the symmetry points ifa50.

Sufficiently large spectral data sets have been gener
by varyingk over small intervals so that the classical diff
sion constantD'k2/2 is not changed appreciably. The p
rametersN, q, and k were chosen such that the scale
localization due to disorder within the unit cell@6,24# by far
exceeds the cell size. In Fig. 4~a! we show, for both twofold
symmetries simultaneously broken~a50.2, l50.5!, the set
of K̃n(t) as a function oft at selected equidistant values
n and compare with our theory@Eqs. ~10! and ~16!#. The
three time regimes and the corresponding power-law t
dependences ofK̃0(t) can clearly be distinguished. Compa
ing with the nonlinear-s-model results@5# @Eq. ~20! and the
dashed lines in Fig. 2#, we find that neart51, they repro-
duce the data even better, including an unexpected fea
such as the sharp peak atn50, t51. The saturation regime
t*NAp/guc, however, is not contained in Eq.~20!.

Our second example is a billiard chain composed of u
cells as shown in the inset in Fig. 4~b!. The wave functions
s

-

-

n

e-

ar

o

ry

ed

f

e

re

it

satisfy the Helmholtz equation augmented with Dirich
boundary conditions on the channel walls and perio
boundary conditions along the channel afterN unit cells.
Provided that trajectories traversing the unit cell without h
ting the obstacles are excluded by an appropriate geom
the classical dynamics is diffusive on scales larger than
size of the unit cell. The energy bands can be found using
scattering approach to billiard quantization; see Ref.@18# for
details of the method. The shape of the unit cell is cho
such that there are no other unitary symmetries besides
discrete translation invariance. However, due to tim
reversal invariance, the bands are symmetric with respec
u50 and p such thatg05gN/252 and otherwisegn51.
Figure 4~b!, which is analogous to Fig. 4~a!, clearly shows
the corresponding enhancements ofK̃0(t) and K̃N/2(t)
throughout the three regimes. Correspondingly, the spec
statistics for fixed Bloch number follows the COE at th
center and the edge of the Brillouin zone and approaches
CUE in between@18#.

Our theoretical results reproduce remarkably well the
merical data obtained for the two models. This lends supp
to the approximations underlying the theory and corrobora
its conclusions. The large-N limit is of particular interest
because it provides a very sensitive tool for studying
transition to Anderson localization when the periodicity
disrupted by disorder. In the latter case, the level statis

FIG. 4. ~a! Form factorsK̃n(t) for the kicked rotor on a torus a
~from top to bottom! n50,16,32,...,256 (N5512), compared to the
theory ~heavy lines!. The parameters determiningguc are, in the
notation of Ref.@1#, t54p/225 ~dimensionless quantum of action
not to be confounded with the scaled time used in this paper! and
k5300, givingguc5200p. All twofold antiunitary symmetries are
broken.~b! is analogous to~a!, but for a billiard chain composed o
N5128 unit cells~inset!. The winding numbers shown aren50, 2,
4, 8, 16, 32, and 64. The only free parameter of the theoryguc was
determined by an independent classical simulation@18#.
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approaches the Poissonian limit and the corresponding s
tral form factor approaches the constant value 1 in the lo
time limit. This is in a marked difference from the period
case, whereK̃0(t)'1/t for t.1/N. The transition between
these two rather distinct asymptotics occurs as a smo
function of the degree of disorder. In order to understand
transition in semiclassical terms@1,2#, one may discuss the
effect of weak disorder through the small random differen
between the phases assigned to periodic orbits that wer
lated by symmetry in the absence of disorder. This appro
is similar to the semiclassical discussion of the respons
d

n-

-

s.

E

ec-
-

th
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s
re-
ch
of

the weak-localization peak to a weak magnetic field@25#. A
detailed analysis of this scenario will be left for furth
study.
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